TR-909 SERVICE NOTES
 First Edition

SPECIFICATIONS

Memory Capacity
48 Rhythm Patterns (16×3 Pattern Groups)
$\times 2$ (Bank 1. 11)
Tracks
4 Tracks (1 to 4: Continuous Maximum measures 896)
$\times 2$ (Banks 1, II) $\times 2$ (Banks 1, II)
Steps (per measure)
1 to 16 steps
Tempo
J. 37 to 290

Rear Panel
Master Out (L, R/MONO) [6 Vp-p, 1k Ω]
Multi OutSee P. 9
Bass Drum, Snare, Low Tom, Mid Tom, Hi Tom.
Rim Shot, Claps, Hi-Hat, Crash, Ride

Trigger Out
(Rim Shot: $+14 \mathrm{~V}, 20 \mathrm{~ms}$ pulse)
Sync in (5P-DIN)
(1: Run/Stop, 2: GND, 3: Clock, 5: Continue)
Power Consumption: 14 W
Dimensions:
$486(W) \times 105(H) \times 300(D) \mathrm{mm} /$
$19.1 / 8(\mathrm{~W}) \times 4.1 / 8(\mathrm{H}) \times 11.13 / 16(\mathrm{O})$ in
Weight: $\mathbf{4 . 5} \mathbf{~ k g} / 9 \mathrm{lb} 15 \mathrm{oz}$
Option: Memory cartiridge M.64C Pedal Switch DP-2

All knobs (2247030300) (13279735)

Pot.EVJFDAF30A15 100 KA
(13279733)

PARTS LIST

ASING

221039300 Panel top
2202023200 Cover bottom
112017600 Panel side (R)
2202024300 Cover battery box
2222030700 Cover display window
2235010100 Rubber Foot
KNOB, BUTTON, KEY TOP \qquad
2247029000 Knob tempo, volume
2247030300 Knob all suall rotary knobs
2247029100 Key Top (gray)
$\begin{array}{ll}2247029100 & \text { Key Top (gray) } \\ 2247029200 & \text { Key Top (Ivory) }\end{array}$
PCB ASSEMBLY
73133071 Power Supply Boar
pcb 2291084703 1/2
light touch switch

Power Supply Board 117 V
73133074 (pcb 2291084703 1/2) 220V
$73133075 \begin{aligned} & \text { (pcb 2291084703 1/2) } \\ & \text { Power Supply Board }\end{aligned} \quad$ 240V 2P
$73133076 \begin{array}{llll} & \begin{array}{l}\text { (pcb 2291084703 1/2) } \\ \text { Power Supply Board }\end{array} & 240 \mathrm{~V} & 3 P\end{array}$
$73133080 \quad$ Switch Board (pcb 2291084703 2/2)
73133100 Multi Jack Board JK-1 (pcb $22910849031 / 3$)

73133110	DIN Jack Board JK-2
	(pcb 2291084903 2/3)
73133090	Voicing Board (pcb 2291084903 3/3)
73133120	Cartridge Board (pcb 2291085000)

TRANSFORMER
22450364 UO Power
FUSE, FUSE HOLDER

POTENTIOMETER

IC DATA

TC4520BP

DUAL BINARY UP COUNTER

HD14006BP

18-BIT STATIC SHIFT REGISTER

HD74LS138P

HD74LS138P
3 TO \& DEMULTIPLEXER

BLOCK DIAGRAM

CIRCUIT DESCRIPTIONS

IC604 CPU μ_{μ} PD7811G-033-036 (SWITCH BOARD) PORT ASSIGNMENT

$\left.\begin{array}{cc} \hline P A & 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}\right\}$	Scanning Signal Outputs to Switches LED Driving Signal Outputs
$\left.\begin{array}{rr} \text { PB } & 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \end{array}\right\}$	Scanning Signal Outputs to LED -Latch Signal Output to 7-seg LED Driver Data Outputs to Tape Interface
$\begin{aligned} & \text { PC } 0 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Serial Transmitter to MIDI Serial Receiver from MIDI Input from Foot Switch Data Input from Tape Interface (Rhythm or SYNC data) Tape SYNC Output Start/Stop Signal Input from DIN Socket Continue Signal Input from DIN Socket Unused (Input)
PD $\left.\begin{array}{cc}0 \\ & 1 \\ & 7\end{array}\right\}$	Data Bus Multiplexed Address Bus (Lower)
PF $\left.\begin{array}{c}0 \\ 7 \\ 7\end{array}\right\}$	Address Bus (Higher)
NMI	Unused
INT 1	Clock Signal Input from DIN
AN 0 $\left.\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 7\end{array}\right\}$	Analog Voltage Input from TEMPO Control Unused - Analog Voltage Input from TOTAL Control Unused

The TR-909 combines Voice Generators and CPU based controller. In basic operation, the CPU scans panel switches, stores switch outputs, and generates trigger (TRIG) and volume (ACCENT) data for the voice generators which are categorized into two: Digital and Analog. The CPU provides them with TRIG and $A C C E N T$ data in an identical way.

ACCENT \& TRIG

Accent

Accent data on the CPU bus is latched into one of ACCENT latches (IC2-IC9) selected by Address Decoder (IC612, 513). Latched ACCENT code is converted to analog equivalent at the output of associated resistor array RM0621. The voltage is clamped to the level until it is replaced by the next incoming data.

TRIG

Almost concurrent with ACCENT, TRIG is latched into IC1 or IC10, and appears as 5 V positive going pulse on the correct output pin for 2 ms . TRIG is used either solely or in combination with ACCENT to reset generator(s) and to create various envelopes for controlling pitch, tone color, contour, loudness, etc. of the particular rhythm sound being sounded.

DIGITAL VOICE GENERATORS

Hi-Hat, Ride and Crash cymbals are reproduced out of digital sound memories which have been sampled from an actual instrument, modified to be useful as data and stored into the ROM by way of PCM.
Circuit configurations and operations of these voices are basically the same. The following description takes Hi -Hat as a representative.

HI.HAT

Pressing Hi -Hat button(s) develops a positive pulse (TRIG) on pin 7 of IC10, resetting Address Counters IC70 and IC71 to have "0's" on their all outputs. These O's cause IC72a output to swing to $\mathrm{H}($ run) irrespective of a CLOSED/ OPEN being applied to diode OR's (D196-199)

Upon receiving this "run" from IC72a, a combination of two gates (IC72 e and d) starts oscillation and outputs about 60 kHz , which is divided by two and shaped up by IC73 flip-flop (TIMING GEN), clocking the address counters. With the same BOM beginning and end at different locations accord. O H or L of the CLOSED/OPEN as shown in the table. IC72a turns its output to L (stop) when the counter increments to:
$110000000000000 \ldots$ in OPEN mode
$010000000000000 \ldots$ in CLOSED mode
address table

OPEN HI-HAT	00000000000000 $\boldsymbol{\downarrow}$
COMMON ADDRESS	110000000000000
	$\boldsymbol{\downarrow}$
CLOSED HI-HAT	111111111111111

Voice data clocked out of ROM IC69 are latched into IC68 and then converted to analog voltages whille passing through RA9. The sound results at RA9 output has an evelope somewhat different from that of actual Hi. Hat sound. lized and Pulse Code Modulated (PCM) in order to have greater S $/ \mathrm{N}$ ratio and higher digital resolution. The envelope of this Hi.Hat sound can be controlled higher digital resolution. The envelope of this tir-Hat sound can be controled
manually with DECAY control (VR21 or VR23). CLOSED..... A high CLOSEDIOPEN
CLOSED A high CLOSED/OPEN on 072 base removes a positive voltage from its coliector which in turn allows 073 to charge DECAY capacitor C135 through R451 and VR21. Since this charging path is $1 /$ tenth the total resistance of R452 and VR23, the charging rate of C135 depends on VR21 setting.

OPEN With IOW CLOSED/OPEN, CH charging path is disconnected from the DC supply source at Q 73 OH path becomes conductive.

CRASH \& RIDE

These voices also have unique envelopes that are quite different from actual sounds when the data are directly reproduced. The reason Restoration of the envelops are made by the use of ROM addresses as the envelop data. Before being stored into the ROM, the envelope of CRASH is changed with the following conpensation measure taken into consideration. When CRASH sound data aro read successively from ROM (IC62) with correct oddresses, the same addresses are also converted to analog voltages through RA11. anti-log tapered by IC52b and O70, and are applied to the base of 071 (VCA) which is configured as a voltage controlled potentiometer to give the incoming voltage the CRASH decay curve.

Share your manuals Don't sell them...

analog voice generators

SNARE, BASS, TOM TOM operate basically in the same manner and share the same Noise Generator. For discussion purposes the schematic references for SNARE DRUM are used in the description below.

SNARE DRUM

SNARE DRUM consists of Drum and Snappy, each further separated into two parts.
DRUM
Drum voice is composed of VCO-1 and VCO-2 with associated Control Voltage Generator (IC35). VCO-1 and VCO-2 have similar circuitry except that charging capacitors $\mathbf{C 6 9}$ and $\mathrm{C71}$ have different capacitance so that they can oscillate at different frequency: VCO-1 runs at lower frequency
VCO-1 comprises a hytheresis comparator IC37a, inverting buffers configured as voltage-dependent resistor (in (C36) and an integrator consisting of IC37b and C69 with O44 switcher. In this arrangement VCO- 1 generates triangle wavetorm. When TRIG is applied to the base of $\mathrm{O39}$ VCO- 1 receives
positive pulse from $\mathrm{O4O}$ collector at the following places.
a) One input of IC37a via D62. When the pulse is applied, IC37a turns its output to low.
b) The base of 044 which discharges C69, canceling VCO- 1 output.

The combination of a) and b) resets VCO. 1 to the starting point at which $\mathrm{VCO}-2$ also starts oscillation, phasing the initial waveforms of both VCOs.
c) The base of Q46 which cuts off VCA 050 , muting unwanted noises in the VCO. 1 path.
d) $\mathrm{VCO}-1$ also sees the effects of trigger pulse from O_{40} at $V_{D D}$ and $V_{S S}$ terminals of buffer IC36 through the control voltage generator.
The outputs of IC35 gives the buffers output amplitude proportional to ENV. 1 as shown in figure; the charging rate of 699 also continuously changes for about 20 ms . The resultant effect is a pitch bend of Snare drum The amount of drum voice from VCO 1 is determined by VCA O50 whose gain follows ENV 3 which is in turn controlled by an ACCENT coming through 04 currently gated by the TRIG.
IC36

SNAPPY
ACCENT signal is gated through 04: by the trigger from 039 collector and is coupled to the base of O47 VCA as ENV 5. ENV 5 determines the amount of high frequency noise components in the SNAPPY which becomes articulate passing through a high pass filter (IC39a and associated RC's) are combined with the noises from the low pass filter at IC39b.

NOISE

This is a quasi-randorn noise generato having two shift registers (IC32, IC33) connected in cascade making up 32 tages. Chaining of 32 stages provides a longer interval betwcen the beginning and the end of shift cycles. This means that the frequency changes occuring at end/start points of shifting cycle are made less noticeable to the human ear. Two Ex-OR gates of IC31 clock the shift registers at a higher frequency, allowing them to create noises that contain favorable higher frequency contents.
On power.up, a trigger is applied into pin 1 of IC32 via D48 for starting run
ning.

RESET

Q701, Q702, D701 and associated circuits on the Power Supply Board cause RESET inputs to 10604 CPU and IC608 RAM on Switch Board to be held low on power-up to allow DC supplies and signals to stabilize before starting processing. When the voltage on input terminal of IC703 (Power Supply vides power down reset when the IC703 cuppt off Q702. The circuit also provides power down reset when the IC703 input voltage goes sufficiently below
7.0 V on power down or power fail The RESET is also routed to: Cartridge Board down or power fail. The RESET is also routed to:
Cartridge Board and
TRIG and ACCENT latches (IC1-IC10) on VOICING Board via Switch reset, first check the unit's serial number. If prior to 393000 , replace D701 (zener diode) of Power Supply Board with RD5.6JB2. Reter to "CHANGE INFORMATION" in this manuet

TAPE INTERFACE

TAPE INTERFACE on VG BRD consists of two sections: Output-to-TAPE and Input-from-TAPE. The Interface will take dual duties; either a) or b) described below depending on TR. 909 operation mode.
a) MEMORY SAVE \& LOAD

To allow rhythm data stored in TR-909's memory to be preserved on cassette tape recorder and vice versa.
b) TAPE SYNC

To allow a signal (TEMPO CLOCKK) on a tape to control the speed of operation of TR-909. Also to provide such sync signal for recording on In normal PLAY mode TAPE INTERFFACE sends out TAPE \& SYNC signal from OUT/SAVE jack.
In basic WRITE mode YR-909's CPU , does not accept data coming through the Interface.

SAVE \& LOAD/VERIFY

SAVE
During SAVE routine, the CPU (on SWW BRD) represents rhythm data, which is to be recorded on tape, as 2 -bit codde on Port B- 6 and 7. CPU can select one of two codes for one " 0 ", and anosther one of two for each " 1 " to make successive 1 's and 0 's distinguishable frcom the adjacents when they are chained at the output of D-to-A arrangement (composed of R318-R322.

LOAD \& VERIFY

Rhythm data from tape passing through IN/LOAD jack is first differentiated, smoothed at IC41b, shaped up to a rectangular at IC41a comparator, then entered into the CPU via Port C-3. The CPU measures the length of each incoming haf-period by detecting every edge. Depending on the length the CPU recognizes a " 0 " or a " 1 " as follows:

TAPE SYNC
IN STOP MODE ... The CPU develops continual 1200 Hz pulse at Port C-4: IN normal PLAY MODE ...The CPU generates 1200 Hz and 2400 Hz alternately.
The CPU changes frequency between 1200 and 2400 Hz at every half-period of T which is $1 / 24$ of the time required for most of Roland products to process a quarter note.
These 1200 or/and 2400 Hz coming to TAPE INTERFACE have their high components filtered out by C93, R328, C94 and R329 before being routed to OUT/SAVE jack for use by the tape recorder as shown below.

IN SYNC.TO-TAPE MODE . . IC41, O52 and surrounding cirecuits work on incoming signal in just the same way they do in LOAD or VERIFY mode. The CPU converts this signal to the actual useful information. That is, the number of times per second that the signal changes frequency between 1200 and 2400 Hz

RELOADING FACTORY-PATTERNS

. The TR-909 contains factory-rhythm pattorns in BANK I, TRACK 1 under as-delivered condition. When the need arises to reload the patterns. follow the procedure below.
Note: Contirm that the resident voice data (especially, user's program) allows replacing.

While holding down TRACK 1 and PATTERN 1, turn the unit ON.
2. RE-LOADING BANKS I, II, TRACK 4
(See "Change Information" No. 1 in the subsequent paragraph to decide whether the following steps are necessary.)

1) While depressing SHIFT, tap TRACK 4.
2) Tap ENTER.
3) While depressing SHIFT, top BANK II.
4) While depresssing SHIFT, tap TRACK 4.
5) Tap ENTER.

CHANGE INFORMATION

ROM IC609 SWITCH BOARD

Group	serial number	ROM USEd	hemarks
${ }^{\text {A }}$	380100 393899	2764-250NS:- without version number on the Iabel1Revision 0)	
8	403900		

Description

ROM in Group A

If measures in TRACK 1,2 or 3 are incremented or decremented while there is no measure in TRACK 4, and one of subsequent TRACKs is selected for writing, all rhythm patterns may be lost or re-written. This can be avoided by implementing "RELOADING FACTORY-PATTERNS" paragraph 2 in the preceding section, or by replacing the existing ROM with the one in Group B.

ROMs in Group A and B

When synchronizing to MIDI clocks, there are glitehes. TR-909 sometimes falls behind if STOP is pressed, then CONTINUE is pressed (this won't hap. pen when MIDI clocks are transferred between TR-909's). Software revision 2 cures this problem and is incorporated in 2764-250NS labeled Ver. 2. To check if existing ROM is Ver. 2, turn the power ON while holding down TRACK 1 key, and MAIN key 2 (BASS DRUM) will blink, if version 2. ROMs of Ver. 2 are available from the factory to upgrade units on the market

SERIAL NUMBER	PART AFFECTED	description
370600	Batrery Compartment Lid	From tubber-made to metal made For positive enganement. As a replacement Metal one shouid be used (compatible!
381500	TAPE SYNC Filter \& Amp VOICING BOARD	C87. From 10 pF to delete. R306. Fram 4.7k to 47 k , R312. From 470 k to 4.7 M . For optimizing wavelorms corming fram tape in LOAD mode. Capacitor C9. From 0. 22μ F to $\overline{0} . \overrightarrow{J 3 \mu F}$. For expanding the TUNE range.
393000	RESET POWER SUPPLY BOARD	D701. Fiom R06.8J82 to RO5.6J92 TR-909 would be forced to stop or its LED would start blinking when high oower electrical instrument (s) is power. ed $O N$ or OFF under poor $A C$ supply condition tabout less 103 nominal wolt age). This simple diodes change will ensure reliable operation even at 20% below the nominal voltage.
415300	RIM SHOT VOICING BOARD HI.HAT VOICING BOARD	Resistor 月417. From 12k to 3.3k For giving the voice more realistic sound. Capacitor C134. From $10 \mu \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$. For rolling oll unnecessary lower thequencies
	(TAPE SYNC) VOICING BOARD DIN JACK BOARD (JK.2)	From jumper wire to A 495 ik R393. From 10 k to 1 M . A392. From 22 k to 1 M . Add capacitor C600 0. 1 1 F between te minal No. 30 and the sround IT RIG OUT jeck . Hot-Ground). For preventing RIM SHOT signal Irom teing induced onto TAPE SYNC signal
426700	TOM Noises VOICING BOARD	Capacitor C54. From 0.0022 $\mu \mathrm{F}$ to $0.0047 \mu \mathrm{~F}, \mathrm{R} 19947 \mathrm{~K}$ to look. This change will emphasize attack of том томs

FAULT ISOLATION GUIDE

Symptom	Cause \& action to be taken
The Unit tails to reproduce pro grammed thythm sequence. Some memories have been replaced by other data.	PROM IC609 Ver. 1.0 has newe program whelr should solve the problem of unreliability. Refer to "CHANGE INFORMATION" Check OC rails, Check IC702 on the Power Sapaly Board. Check RA600 and RAB02 on Switch Board.
The unit stops running uport power ON/OFF transient of other electrical devices.	RESET circuitry is too sensitive to $A C$ power drop. Check zener diode D701 on Power Suppily Board. If it is RD6.8.JB2, replace with RD5.6.Je2 Refer to "CHANGE INFORMATION"
Data transfer between Internal Memory and Memory Cartridge (SAVE/LOAD) fails.	There should be an additional instruction to " 3 . Memory Cartridge" of the Ownee's Manual Ip. 33 ! ENTER KEY must be UNLIT (internal Memory Mode) during SAVE or LOAD (rorm Memory Carridge. That is ... "Press ENTEA when it s lit, then hoils SHIFT:
Noise is high in OUTPUT	For the unis prico to Serial Number 415300. Add capacitor 0.01 af astoss jack erkuits on Mu: Jack Board IMULTI JACK BOAHD Diggrem denotes these capactor as C500-C512).

CIRCUIT DIAGRAM
VOICING BOARD VG

DIN JACK BOARD
(JK-2) 73133110
(pcb 2291084900 2/3)

View from foil side

POWER SUPPLY BOARD
$\begin{array}{ll}73133071 & 100 \mathrm{~V} \\ 73133072 & 117 \mathrm{~V} \\ 73133074 & 220 \mathrm{~V} \\ 73133075 & 240 \mathrm{~V} 2 \mathrm{P} \\ 73133076 & 240 \mathrm{~V} 3 \mathrm{P}\end{array}$
(pcb 2291084700 1/2)

CARTRIDGE BOARD
73133120
(pcb 2291085000)

Share your manuals Don't sell them...

MIDI NOTES

The TR-909 is designed to accept voice messages sent over MIDI channel(s) in any of four channel modes defined in the MIDI Specification as shown in the table below.

	mode	Receiver	
1	$\begin{aligned} & \text { OMNI ON } \\ & \text { POLY } \end{aligned}$	Vouce messages are received from all Voice Channels and assigned ta vaices polyphonically.	
2	OMNI ON MONO	Voice messages are received from all Voise Channels, and control only one voice, monophonically.	
3	$\begin{aligned} & \text { OMNI OFF } \\ & \text { POLY } \end{aligned}$	Voice messages are received in Voice Channel N only, and are assigned to voices polyphanically.	N: Basic Channel This is an inherent channel of
4	$\begin{aligned} & \text { OMNI OFF } \\ & \text { MONO } \end{aligned}$	Oice ffussoges are received in Voice Channels N thru $\mathrm{N}+\mathrm{M}-1$. and assigned monophonically to voices 1 thru M, respectivey. The number of voices M is specified by the third byte of the Mono Mode Message.	ee changed but may be changed by the panel function on the instru ment. The TR-909 has channel selec-

To fully take advantage of this feature, however, proper Channel Mode must be selected to receive necessary voice messages only, and to reject unnecessary ones.

Before proceeding to this text, please note the following:
. TR-909 is a one woice rhythm machine.
The rhythm sounds (rhythm voice generators) are assigned to KEY (NOTEI numebrs, respectively, as shown below.
A given MIDI message will take effect only when recognized by TR-909. Do not put TR-909 into MIDI-loop circuit. Feedback may lead to malfunction.

MIDI KEY ASSIGNMENT
kkkkkk-35, 36 Bass Drum

k-35, 36	Bass Drum	
37	Rims Shot	
38, 40	Snare Drum	
39	Hand Clap	
41, 43	Low Tom	
42, 44	Closed Mi-Hat	
45, 47	Mid Tom	Keys not listed are ignored.
${ }_{48}^{46} 50$	Open Hi-Hat	a wound with converiont key
$\begin{aligned} & 48,50 \\ & 49 \end{aligned}$	High Tom Crosh Cymbal	play.
51	Hide Cymbal	

MODES AND CHANNELS IN TR-909 MIDI CONNECTIONS

As can be seen from the fiagram, TR-909 MIDO OUT does dual duties; it also serves as a kind of MIDI THRU. Using this route, additional data can be sent in different channels, and yet can be mixed with TR-909 output data in one channer at the TR-909 MIDI OUT. Thus, an external voice will be controlled sages common to internal and edata that TR-909 cannot provide. MIDI mes To prevent the data arady expernal voices are coordinated by TR. 909 .
sequent unit, receiving and transmitting chanels are seingre-ed to the sub sequent unit, receiving and transmitting channels are set to different channels at the factory.

MODE 1.....OMNI ON, POLY
MODE 2.....OMNI ON, MONO

With this connection, slave unit can recog nize voice messages on whichever channels the master unit transmits. There is no dif. function since it contains only one voice.

MODE 3....OMNI OFF, POLY
SLAVE In a system as shown, each slave should be in OMNI OFF mode with its basic channel match the channel number assigned by the sponse to voice messages sent over its current basic channel only (see "GENERAL PRECAUTIONS" on page 16)
As for TR-909, it must be set to MODE 3. The table below will help set TR-909 to correct mode and channel.
All slaves in different chasnels

NOTE:

Roland products with preliminery MIDI turn to OMNI OFF upon receiving POLY ON.

CHANNELS \& CHANNEL MODES

	RECEIVER	TRANSMITTER
ON POWER-UP mODE CHANNEL	Defaults to MODE 1 (OMNI ON, POLY) 10(1001)	Defaults to POLY 11 (1010)
HOW TO change channels and modes	Both receiving and transmitting 16 channels from front panel. 1. Press Shuffle/flam This will display the current channel number. On power up, without any input message, " 10 " will be replaced by " 0 " to indicate OMNI ON. 2. Holding SHUFFLE, select neve channel, as necessary. by pushing MAIN KEY (1 thru 16). This also sets the new chennel to MODE 3 IOMNI OFF. POLY).	annels can be changed to any of 1. Press L.AST STEP. This will display the current channel number. 2. Holding LAST STEP, select new channel, as needed, by pushing MAIN Key (1 thru 16). This will cause transmission of OMNI OFF and POLY mode messeges in the new charnel. This function should be adopted when need arises to set its slave (which is incapable of changing receiving channels by itself) to OMNI OFF mode.

MASTER

1st slave TR. 909 2nd slave

When the slave(s) has no capability of channel selection or mode change to OMNI OFF (like some Roland preliminary instruments), this can be cured by using the TR-909 transmitter's feature listed above.
(See "GENERAL PRECAUTIONS" on page 16. .

MODE 4.....OMNI OFF, MONO

When TR-909 receives MONO mode message with OMNI OFF mode, it recognizes the number (M) represented by the 3rd byte of the message. TR-909, then accepts voicing messages on the basic channels and upward according to M.

Example: Basic channel- $-4, M-3$, then $4+3-1$. i.e. channels 4.5 and 6 . Result numbers exceeding 16 are ignored

MIDI IMPLEMENTATION
(Complies with MIDI 1.0)

- 1 On power-up "nnnn" is set to 1010 (channel 11). Can be changed to $0000(1)$ through $1111(16)$ from the front panel.
2 When a channel number is set, "OMNI OFF" and "POLY ON" are sent in that channel.
3 Sent only when in TRACK PLAY and STOP modes, and atter a measure number has
4 been set. 4 Sent when TRACK number or BANK is selected. (The same number is applied to the Memory Cartridge, if selected.)

sssssss $=$	0	Bank-1
1	Track-1	
2	Track-2	
2	Track-3	
3	Track-4	
4	Bank-2	Track-1
5	Track-2	
6	Track-3	
7	Track-4	

'5 One of the following, according to TEMPO MODE setting.
INTERNAL mode
This is synced to the internal TEMPO clock (MIDI clock and DIN SYNC Inputs are ignored).

MIDI mode
MIDI clock input is selected (Internal TEMPO clock and DIN SYNC input are ignored).
DIN SYNC mode
This is synced to the positive going edge of clock pulses from DIN jack (MIDI and Internal TEMPO clocks are ignored).
-6 The TR-909 always powers-up with channel set to "10"(1001) and with OMNI mode ON. The channel can be changed to " 1 " (0000) through " 16 " (1111) from the front panel with its mode switched to OMNI OFF
7 Note On message works as a trigger pulse.
Note Off message and Note On with vvvv $=0$ are ignored.
MIDI KEY ASSIGNMENT

35, 36	Bass Drum
37	Rim Shot
38, 40	Snare Drum
39	Hand Clap
41,43	Low Tom
42, 44	Closed Hi - Hat
45, 47	Mid Tom
46	Open Hi-Hat
48, 50	High Tom
49	Crash Cymbal

NOTE:
NOTE: only with MIDI thythm patterns. select a blenk TAACK. Pattern programmed in a selected urack will be forced to run whene
START comes from MIDI IN.

8 Voice messages are received in Voice Channels "mmmm" through "mmmm+M-1"
9 Recognized only when in TRACK PLAY and STOP modes.
10 Effective only when the TR-909 is in STOP during PLAY. TRACK WRITE PAT TERN PLAY, or PATTERN WRITE. Upon receiving, the TR-909 enters TRACK PLAY mode.
11 Recognized only when TEMPO MODE is set to MIDI.

TR-909 SYSTEM EXCLUSIVE

1. INTRODUCTION

Using system exclusive messages, a bank of thythm data can be transmitted to or received from the TR-909 (TR-909 has two banks).
To interact with TR-909 by using system exclusive a host computer must be linked toge ther.
The host computer must first send REQUEST to the TR-909 which does not take the initiative in transferring system exclusive.
The TR-909 can process the system exclusive only when in TRACK PLAY and STOP modes.

2. DATA SAVE TO THE HOST COMPUTER
(1) REQUEST HOST \rightarrow TR.909

Byte	Description
11110000	Exclusive status
01000001	Roland ID \#
01010001	Operation Code
11110111	EOX (End of Exclusive)
	HOST

(2) DATA	HOST *- TR.909
Byte	Description
11110000	Exclusive status
01000001	Roland 10 \#
01010010	Operation Code (or 01110000 - abort)
00000001	Format type
0100 nnnn	Block \# (nnnn: 0000 - 1111)
0000 xxxx	4
0000 yyyy	Rhythm data (yyyyxxxx)
$0000 . .$.	512 bytes
0000	
	Check sum (for the preceding 512 data bytes)
Osssssis	Check sum (for the preceding 512 data bytes)
11110111	EOX
11110000	Exclusive status
01000001	Roland ID \#
01010100	Operation Code (or $01010101=$ no data follow)
11110111	EOX

Byte Description
11110000
01000001
01010011
11110111
Exclusive status
Roland ID \#
Operation Code (or $01110001=$ Error)
EOX
4) Repeat (2) and (3) increasing Block \#until nnnn $=1111$.
(A bank of rhythm data is divided into 16 blocks.)
3. DATA LOAD FROM THE HOST COMPUTER

Byte
11110000

Byte	Description
11110000	Exclusive status
01000001	Roland ID \#
01010000	Operation Code
11110111	EOX (End of Exclusive)

(2) ANSWER HOST ~TR-909

Byte

11110000
01000001
01010001
DATA
3) DATA

Byte
11110000
01000001
01000010
01010
00000001
0100 nnn
$0000 \times x \times x$
0000 yyyy
0000 ..
0000 ...
0sss ssss
11110111
11110111
11110000
01000001
01010100
11110111

ACKNOWLEDGE 3 HOST *- TR.909

Byte

11110000
01000001
01010011
11110111
Description
Exclusive status
Operation Code (or $01110000=$ abort $)$
EOX (End of Exclusive)
HOST \rightarrow TR. 909
(5) Repeat (3) and (4) increasing Block \#until nnnn $=1111$. (A bank of rhythm data is divided into 16 blocks.)

GENERAL PRECAUTIONS ON MIDI CONNECTION

Although all MIDI instiuments tunction to MIDI speciicastion, sorne preccautions musi be taken for satistactory operation.
This is mainly due to MIDI revision. One of primary procederes to be coresily toll is setting of "Channel Mode" otherwise MiOI function tails trom the beginning. Also remember that MIDI information is effective only when receiving device can recognize a given messege and has softwore and hardware that duplicate function defined by the message.
On power up most Roland products complying with MIDI specification 1,0 default to OMNI ON, POLY. On the contrary, they transmit OMNI OFF and POLY mode messagas Hrom MIDI OUT jack. The reason is as follows.
Recciving instrument must be reset to OMNI ofF mode when it is to accormodate voice messuges sent over the channel to which it is currently assigned while other voike messoges are present in other channels. (Example, a systemn consists of one master and more
than one slave, each assigned to different channel.) However, some instruments are incapabte of changing modes on the front panel and need external OMNI OFF messone.

To eure this problorn a system ineluding sweh instruments as sloves should be configured as below.

SLAVE(s)
incapable of turning to OMNI OFF mode by itseif

In the above combination

1. Slave must be powered ON before the magter is turned ON.
(When the second slieve connects to MIDI OUT of the lifst slive, it is the firss to be turned ON. 1
2. Mastet and Slavelss must be set in the wame channel since mode messages will be recognized by the stave only when set in the channel to which the slave's receiver has seen assigned.

NOTES:
. Roland products with pretiminary MIDI turn to OMNI OFF upon receiving POLY made ON.
2. TR-909 does not send OMNI OFF and POLY messages on powerup but on transmitting ehannel setting.

